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Topic Characteristics: 
My thesis will focus on re-evaluating BERT on its performance on passage re-ranking using 
the MS MARCO dataset. Currently, the MS MARCO dataset contains only a few relevant 
passages per query, mostly one relevant passage per query. My hypothesis is that this is 
inaccurate and that in fact the dataset contains more relevant passages per query. 
Therefore, as part of my research, I will gather more query-passage pair relevancy 
assessments for the MS MARCO passage ranking dataset. With these additional labels I 
then plan to re-evaluate BERT on the task of passage re-ranking. Furthermore, I plan to 
perform a similar evaluation using graded relevance labels, to see if performance is affected 
when dealing with non-binary relevance labels. Finally, recent research has tested BERT’s 
behaviour on specially constructed axiomatic datasets to test if BERT adheres to the 
information retrieval heuristics. For this thesis I would like to explore if similar results can be 
obtained when using the MS MARCO dataset with the newly acquired labels. 
 
Research Questions: 

1. Does the MS MARCO dataset contain more relevant passages per query than 
currently labelled? 

2. Given that the MS MARCO dataset is updated with more relevant passages per 
query, how does this affect BERT performance on the MS MARCO passage re-
ranking task? 

3. What is BERT’s performance on the MS MARCO passage re-ranking task when 
graded relevance labels are used? 

4. Does BERT adhere to the information retrieval heuristics when utilizing the MS 
MARCO passage re-ranking dataset. 
a. How are the results affected when the updated MS MARCO dataset is 

utilized? 
 
Methodology: 
In order to gather more query-passage relevancy assessments, I set out to create an online 
assessment webpage. On this webpage the subjects who consented to help me with my 
research, will be able to read different queries with each a set of corresponding passages. 
They will then be able to assess those passages on their level of relevancy compared to the 
query. It will be possible to select a level of relevancy between 1 and 5, where 1 is totally 
irrelevant and 5 is perfectly relevant. Thus making it possible to gather graded relevancy 
labels for the MS MARCO dataset. Each query will need to be assessed by at least 3 
assessors. In case of discrepancies in the answers by the 3 assessors, a majority voting will 
help to decide on the resulting label. The BM25 algorithm will be used to obtain an initial 
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passage ranking. After which BERT will be used to re-rank the passages in either the current 
MS MARCO dataset or an updated version including the newly collected relevancy labels. In 
order to evaluate BERT’s performance on the passage re-ranking task, I will make use of the 
MRR@10 metric as this was used by the Microsoft organizers. Aside from this metric, I will 
also make use of the MAP and nDCG metric in order to deal with multiple (graded) relevancy 
labels. To be able to check if BERT adheres to the information retrieval heuristic, I will follow 
the paper by Camara and Hauff and construct diagnostic datasets from the MSMARCO data.  
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